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Abstract The results of genetic diversity studies using
molecular markers not only depend on the biology of the
studied objects but also on the quality of the marker data.
Poor data quality may hamper the correct answering of bio-
logical questions. A new statistic is proposed to estimate
the quality of a marker data set with regard to its ability to
describe the structure of the biological material under
study. This statistic is called data resolution (DR). It is cal-
culated by splitting a marker data set at random into two
sets each with half the number of markers. In each set, sim-
ilarities between all pairs of objects are calculated. Subse-
quently, the similarities obtained for the two sets are
correlated. This process is repeated a large number of
times. The average of the correlation coefficients obtained
in this way is the DR of the dataset. In the present paper, the
DR statistic is applied to four studies involving amplified
fragment length polymorphism as well as micro-satellite
markers. In addition, some properties and possible applica-
tions of DR are discussed, including the prediction of the
added value of scoring additional markers, and the determi-
nation of which similarity measure is, apart from genetical
considerations, most appropriate for analyzing the data.

Introduction

Molecular markers such as micro-satellites (Morgante and
Olivieri 1993) and amplified fragment length polymorphism
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(AFLP) (Vos et al. 1995) are popular tools in studying the
genetic structure of a set of genotypes or populations. This
type of studies are used to determine the genetic relation-
ship amongst the accessions in a gene bank or breeding pro-
gram, e.g. to identify duplicates and describe flux across
time, to predict heterosis and compose heterotic groups for
hybrid breeding, or to identify essentially derived varieties
in plant variety protection (cf., Reif et al. 2005). Often
genetic relationships are visualized by a principle compo-
nent plot (e.g. Jolliffe 1986) or by a dendrogram obtained
from cluster analysis, such as the unweighted pair group
method with arithmetic average (Sneath and Sokal 1973).
Using these methods, samples appearing close to each other
are considered genetically similar, whereas samples appear-
ing far apart are considered genetically different. Especially
if the marker data reveal a lack of structure, the question
arises whether this is due to a true lack of population struc-
ture or the result of poor data quality.

Data quality has many aspects. One of these aspects is
the frequency of obvious errors in the data set, think of
occurrence of score 2° where only ‘0’, ‘1’ and ‘x’ have
been defined, or rows with more scores than there are col-
umns defined. Another aspect is the availability of meta-
data required to properly interpret the data, or repeat the
experiment, think of the protocols used in the molecular
characterization and proper references to the material that
was analyzed. The purpose of this paper is to present a
method based on calculating an intra-class correlation using
a jackknife approach for estimating yet another aspect of
quality: the ability of datasets to describe biological struc-
ture, by quantifying the internal consistency of the data.
This biological structure may depend on the type of mark-
ers that are used. Neutral markers may describe the biologi-
cal structure of the same biological material differently as
compared to functional markers, simply because different
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processes have shaped it (random vs. selection processes).
Also AFLPs might result in a different structure as com-
pared to simple sequence repeats (SSRs) because of the
different properties of these markers systems in terms of
coverage of the genome, proximity to selective genes, etc.

The proposed quality estimate is called data resolution
(DR), and will be illustrated by applying it to four datasets
that were used in published molecular studies: an AFLP
and a SSR dataset describing wild lettuce (Lactuca serri-
ola), an AFLP dataset describing barley (Hordeum vulgare)
and one with AFLP band frequencies describing white
cabbage (Brassica oleracea).

Materials and methods
Definition of “data resolution”

The following assumptions are made: (1) The set of mark-
ers used is a random sample from an infinite universe of
similar markers such as AFLP (Vos etal. 1995), SSR
(Morgante and Olivieri 1993), single nucleotide polymor-
phisms (Jenkins and Gibson 2002), or diversity arrays tech-
nology (Wenzl et al. 2004). Different types of markers have
different abilities to describe the structure of a population.
Markers will to a varying degree be correlated with each
other. (2) If an infinite number of markers is used, the struc-
ture of the population (as defined by the type of marker)
will be perfectly described. This implies that a very large
set of markers is expected to result in the same description
of the structure as any other very large set of markers of the
same type. As a consequence, the DR for large marker data
sets will tend to unity. (3) The structure of a population can
be described by the similarities of all pairs of individuals.
Principle coordinate analysis and clustering analysis are
merely used to visualize this matrix of similarities.

The data resolution is calculated as follows. Consider an
analysis based on a dataset consisting of N markers and M
objects, where for reasons of simplicity N is taken to be an
even number. The data set is randomly split into two inde-
pendent data sets D; and D,, both consisting of N/2
markers x M objects each. For each of the data sets D and
D,, the M(M — 1)/2 similarities between all pairs of objects
are calculated. Subsequently the correlation coefficient
(Edwards 1976) between these two sets of values is calcu-
lated. This is repeated a large number of times using differ-
ent random divisions of the dataset. The average correlation
coefficient is calculated. This average correlation coeffi-
cient is called the DR of the dataset.

As concluded from assumption (2) the DR of a data set
consisting of an infinite number of markers is equal to
unity. If the quality of a dataset is low, which means that
the data are not able to properly describe the genetic structure
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of the population, a division of the datasets will result in
two halves which will each describe a different structure,
and will thus have a low correlation and a low DR. In other
words, a low DR indicates that the data set (before split-
ting) will give an unstable and therefore unreliable descrip-
tion of the structure of the objects. However, it should be
realized that a strong structure will result in high values for
DR (close to 1.0) whereas a weak structure will be hardly
recovered, thus a low DR, even if the data are of high qual-
ity. In other words, a dataset mixing close and distant
objects (small and high dissimilarities), high correlations
are expected whatever the consistency. So DR is valid for a
given set of objects but care should be taken when compar-
ing between different sets of objects.

Calculation of “data resolution curve”

To get an indication of the effect of adding markers to an
existing data set, a “data resolution curve” can be calcu-
lated. This curve consists of DR values plotted against
number of markers, ranging from two to the total numbers
of markers in the dataset. For example to calculate the point
on the data resolution curve for ten markers, two sets of five
markers are randomly sampled without replacement from
the whole marker data set, and used to calculate all pair
wise similarity estimates of the objects and their correlation
(as described above). This is repeated many times. The
average correlation will give an expectation of the DR of
ten markers from the marker set. This curve will show the
effect of the use of less or more (via extrapolation) markers
on the DR.

The “data resolution curve” gives the average DR of a
set of a given number of markers. Obviously it is also pos-
sible to calculate the DR of specific subsets of markers. For
example, it is possible to calculate the DR of the “first two”
SSR markers, calculate the effect of adding the third and so
on. The resulting curve is called the “sequential data resolu-
tion curve”.

Similarity measures

Since DR is calculated from the pair wise similarities
between objects, it requires a measure for determining this
similarity. To calculate similarities, five commonly used
methods are applied and compared. The first three are
solely for calculating similarities between single objects
with presence/absence data: (1) the Jaccard similarity
coefficient (Jaccard 1908; Sneath 1957), where similarity is
defined as the fraction of band positions with common
bands relative to the total number of positions with bands:
nl1/(n01 + n10 + nl1), (2) the simple matching coefficient
(Sokal and Michener 1958), which is the fraction of posi-
tions with a common state (present or absent) relative to the
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total number of positions: (n11 + n00)/(n11 + n01 + nl10 +
n00) and (3) the Nei and Li similarity (Nei and Li 1979)
also known as the Dice coefficient (Dice 1945), which is the
fractions of bands shared by both individuals relative to the
total number of bands, thus 2 x nl11/(2 x nl11 +n01 +
nl10). These three measures cannot be used for allele fre-
quency data. The simple matching coefficient, in which the
absence of an allele in both objects is considered an indica-
tion of similarity, has no interpretation in a diversity study
using multi allelic loci such as SSRs.

The other two measures used in this study are quantita-
tive measures that were used for calculating dissimilarity
based on allele frequencies in populations: (4) the Euclid-
ean and (5) Manhattan distance, the latter also known as the
City Block distance. These distances can also be used for
absence/presence data using allele frequencies of zero and
one. If the loci under study are assumed to be bi-allelic,
such as in the AFLP studies, the Euclidean distance is the
square root of the Manhattan distance, and the Manhattan
distance corresponds to the simple matching coefficient.
Furthermore, in the bi-allelic case the Manhattan distance
corresponds to the Rogers’ distance and the Euclidean dis-
tance corresponds to the modified Rogers’ distance (Rogers
1972; Sokal and Rohlf 1962). (For an excellent discussion
of the different similarity measures see Reif et al. 2005). In
the multi-allelic SSR case, the Mahattan distance was cal-
culated as relative number of SSR markers that differed
(and thus one minus the Nei-Li similarity), and the Euclid-
ean distance as the square root of the Manhattan distance.

Data

The behavior of DR was tested using a number of datasets.
Most calculations were performed with a dataset consisting
of 100 Lactuca serriola plants characterized with three
AFLP primer combinations, yielding 179 polymorphic
bands. The fingerprint for each plant was coded as a
sequence of 179 and 1’s, O indicating the absence and 1
indicating the presence of a band. The 100 plants were ran-
domly selected from all characterized plants with complete
fingerprints. This work was done in the framework of a
much larger EU project aimed at exploring the possible
uses of molecular markers for genetic resources manage-
ment (Hintum 2003). The second data set originated from
the same project, and consisted of the scores of ten micro
satellites (SSR) markers describing 100 Lactuca serriola
plants. These scores were recorded in a binary matrix, in
which each of the alleles observed corresponded to a col-
umn and each allele was scored per plant as present (1) or
absent (0). The plants were also randomly selected from all
characterized plants that showed one allele for each marker.
Heterozygotes and plants with missing values were
excluded to facilitate the analysis. The third dataset

consisted of the data used for comparing the structure of a
Brassica oleracea genebank collection with the effects of
standard regeneration protocols (Hintum et al. 2007). This
set consisted of 56 accessions described by the frequency of
occurrence of 101 polymorphic AFLP bands in 50 plants
per accession, recorded as a sequence of 101 values
between O and 1, indicating the frequency of the corre-
sponding band in the accession. One accession from the
original dataset was removed since it contained missing
values. The fourth data set consisted of 75 polymorphic
AFLP bands on a set of 51 barley varieties that were geno-
typed to determine how molecular fingerprints could
support decisions concerning acquisition for a gene bank
collection (Treuren etal. 2006). The fingerprints were
recorded in the same format as the first dataset. In this case
one variety was removed from the data set since it con-
tained missing values.

The removal of hetrozygotes and missing values was
purely to increase the simplicity of the calculations. The
alternative would be to adjust the similarity calculations
accommodating hetrozygosity and missing values, this would
not have any consequence for the subsequent analysis.

Data analysis

All data analyses were performed with tailor-made soft-
ware programs written in visual basic for applications in a
MS-Excel environment. The number of replications used to
calculate the results presented in the present paper was
10,000.

Results

The calculation of the DR of datasets appeared relatively
straightforward; no complicated calculations need to be made.

To obtain reliable estimates of the DR large number of
runs (each run represents one case of splitting the data set)
had to be performed. Figure 1 shows the data resolution
curve for the Lactuca serriola data set. It also shows the
standard deviation of the correlation coefficients in individ-
val runs for a range of number of markers. It can be
observed that especially for a small number of markers the
standard deviation is large. For the cases presented in this
paper, using 10,000 runs, this resulted in a standard error of
around 0.001.

Figure 2 shows the data resolution curves for all three
AFLP datasets. All curves show a similar shape, and, prob-
ably due to the similarity in the type of markers all being
characterized in the same lab, also show remarkable similar
values for a given number of markers. This is somewhat
surprizing given the dependency of the DR on the structure
of the studied material. Figure 3 shows the data resolution
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Fig. 1 Data resolution curve (Jaccard similarity) for the Lactuca
serriola AFLP data set (fat line) and standard deviation of the
correlation coefficients in 10,000 runs (dotted line)
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Fig. 2 Data resolution curves for the Lactuca serriola, Hordeum
vulgare and Brassica oleracea AFLP data sets based on 10,000 runs
(based on Jaccard similarities for the Lactuca and Hordeum data set,
and the Euclidean for the Brassica dataset)

curve for the Lactuca serriola SSR data set and its standard
deviation again showing the familiar shape. This figure also
shows five sequential data resolution curves of random
sequences of the ten SSR markers. It can be observed that
especially with small number of markers the shape can be
quite different from the average curve, as could be expected
looking at the relatively large standard deviation.

The DR can be used to select in a family of biologically
relevant similarity measures the best index from a consis-
tency perspective (e.g. between Euclidean or Manhattan for
frequencies). To illustrate this possible application,the DR
for the data sets were calculated using all five (dis-)similar-
ity measures, as far as they could be calculated given the
dataset. The results are presented in Table 1. Here it can be
observed that in the bi-allelic AFLP data sets (Lactuca and
Hordeum data), the DR for simple matching is equal to that
using the Manhattan distance, as expected. To show that
these differences can have a large impact on the number of
markers needed to reach a certain DR the data resolution
curves of the best (Jaccard) and worst (simple matching)
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Fig. 3 Data resolution curves (Jaccard similarity) for the Lactuca

serriola SSR data set (fat line), standard deviation of the correlation

coeflicients in 10,000 runs (dotted line) and five sequential data resolu-
tion curves of randomly ordered markers
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Fig. 4 Data resolution curves for the Lactuca serriola AFLP data set,
using the Jaccard (fat line) and Simple matching (dotted line) similarity
indexes

measures for the Lactuca serriola AFLP data set are
presented in Fig. 4. It shows that if a DR of 0.7 is to be real-
ized, using the simple matching similarity, 158 markers are
required, whereas the same DR can be reached with 133
markers if the Jaccard similarity index distance is used. This
implies a potential saving of 25 markers based on the choice
of the Jaccard similarity measure in favor of simple match-
ing. Similarly, in the Lactuca serriola SSR case, the resolu-
tion of the complete set of ten markers when using Nei-Li
(0.816) is reached with less than nine markers if Jaccard is
used (nine markers with Jaccard have a DR of 0.825).

Discussion
Calculation of DR

In order to calculate DR, large numbers of runs are
required. In this study the DR of the complete datasets
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Table 1 Data resolution of the . .

four data sets using different Data set (Dis-)Similarity measure

(dis-)similarity measures Jaccard  Nei-Li  Simple matching ~ Buclidean ~ Manhattan
Lactuca 179 AFLP markers 0.784 0.762 0.722 0.752 0.721
Hordeum 75 AFLP markers 0.662 0.652 0.672 0.676 0.672
Brassica 101 AFLP frequencies - - - 0.710 0.672
Lactuca 10 SSR markers 0.842 0.816 - 0.834 0.816

ranged from 0.652 to 0.842; the corresponding standard
deviations were 0.060 and 0.033. This implies that when
10,000 runs are used the standard error of the DR estimates
is around 0.001. For the calculation of the data resolution
curves the standard deviation is larger (see Figs. 1, 3) since
the sampling of the markers in each run introduces an addi-
tional source of variation.

This study used data sets of up to 100 objects. When the
DR of larger data sets is to be determined alternative
approaches have to be considered since the number of simi-
larities that need to be calculated for each run becomes too
large. Random sampling of a limited number of similarities,
i.e., random combinations of cases, can be considered. The
effects of this and other alternative methods for calculating
DR on the variance of the estimates needs further study.

Another issue concerns the calculation of the DR in case
of an odd number of markers. If an odd number of markers
(M) is present, and an equal split of markers is not possible,
the markers were divided into two sets of (M + 1)/2 and
(M — 1)/2 markers respectively. Since the highest correla-
tion can be expected between data sets of equal size, this
inequality will result a slight reduction of the DR, as can be
observed in Fig. 3; the connection between the values for 2
and 4 shows a small but observable decrease, between 4
and 6 this effect has nearly disappeared, and it can hardly be
observed for larger values. Since the DR of such a small
number of markers will rarely be relevant this effect has vir-
tually no impact. To avoid this effect, it is also possible and
in some cases preferable to only consider even number of
markers in the construction of the data resolution curve,
allowing a split in equal numbers of markers.

Data resolution as function of number of markers

When studying the properties of the data resolution curves,
the influence of the structure of the objects should first of
all be taken into account: much structure, this is a mixture
of clusters of similar material, will result in high DR values.
All four figures show the expected shape of the data resolu-
tion curve: a relatively steep start, approaching the value
unity asymptotically. Despite the differences of the popula-
tions analyzed, all three AFLP datasets that were analyzed
resulted in similar curves (Fig. 2). The starting point of the
SSR curve (Fig. 3) was much higher: the starting point for

the AFLP curves was at about 0.04, the SSR curve started
at 0.47. This was expected since a multiallelic SSR marker
contains much more information than a single AFLP
marker displaying only the presence or absence of a band,
which might even correspond to more than one DNA frag-
ment due to homoplasy (Koopman and Gort 2004).

The individual sequential data resolution curves (Fig. 3)
showed large variation. The five random marker sequences
that were calculated (out of the 1,814,400 that are possible)
show a large variation of DR values for small number of
markers. This is not surprising. If the first two markers are
relatively highly correlated they will result in similar simi-
larities and thus a high DR. A third marker can destroy this
congruence and decrease the correlation considerably, as
can be seen in one of the curves drawn in Fig. 3, starting at
a DR of 0.70 for two markers, dropping to 0.53 for three
markers and recovering to 0.63 and 0.69 for four and five
markers respectively. This effect also occurs in AFLP data-
sets for small number of markers, which is reflected in the
relatively high standard deviations of the average DR for
small numbers of AFLP markers (Fig. 1).

Data resolution as function of similarity measure

The calculation of the DR requires a similarity measure. As
a result, the choice of this measure will influence the reso-
lution of a dataset. This choice of a measure to calculate the
genetic similarity based on molecular marker data is pri-
marily based its mathematical properties in relation to the
biological characteristics of the markers: qualitative versus
quantitative, dominant versus codominant, homozygote
versus heterozygote, bands versus alleles, etc. However,
DR can be used to compare the ability of several relevant
measures from a consistency perspective. The absolute
differences between DRs based on different similarity mea-
sures is small (Table 1), however since the slope of the data
resolution curve becomes low relatively soon (Fig. 4), these
small absolute differences translate in large difference in
number of markers required to reach a certain DR level, as
was illustrated by the examples in the results section.

From a consistency perspective, and only based on this
descriptive study, some observation about the performance
of the similarity measures can be made. Of the “classic”
similarity measures for individual marker scores, Jaccard
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performed consistently better than Nei-Li, the performance
of simple matching varied (Table 1). This occurred in all
cases where these measures could be calculated, including
the SSR case. Of the two quantitative measures the Euclid-
ean distance performed consistently better than the Manhat-
tan distance. Surprizingly the Euclidean distance could
compete with the “molecular distances”, in the Hordeum
AFLP case both quantitative measures performed better
than Jaccard and Nei-Li. Further study will be required to
explain these observations.

Importance of data resolution

The data resolution as presented in this paper provides a
way to quantify the consistency of a data set in terms of the
ability of the dataset to describe the structure of the charac-
terized material as defined by the markers used. Besides this
widely applicable property, the data resolution also allows
prediction of the value of additional markers and compari-
son of alternative ways to calculate the similarity between
individuals. Until now such quantity was unavailable. In
principal component analysis it is possible to indicate the
“percentage of explained variance” for each principal com-
ponent, which can be considered an indication for the
degree to which the data describe the structure in the mate-
rial. However, this percentage will obviously be largely
dependent on the structure of the material and the number of
markers used (the more markers, the lower the explained
variance). Also in the case of hierarchical clustering algo-
rithms it is possible to give an indication of the stability of
the tree by calculating “bootstrap values” for each node
(Felsenstein 1985). An other approach that can be used to
validate the structure represented in a dendrogram is the
cophenetic correlation coefficient (Rohlf 1972). It is a sim-
ple correlation between the cophenetic distances obtained
from the tree (the height of the link between two objects in
the dendrogram) and the original distances in the distance
matrix that was used to construct the dendrogram. These
analyses are obviously very dependent of the structure of
the material itself and also of the clustering algorithm used.
The data resolution is also to some extent determined by the
structure of the material, as discussed above. A proper vali-
dation of the method, including a determination of the effect
of the population structure should be determined in future
studies probably using simulated data, where both structure
and consistency of the data can be defined a priori.

Zhang et al. (2002) and You et al. (2004) used the corre-
lation between the similarity matrix based on a subset of
alleles or markers with that based on the complete set of
markers as a measure of the quality of the subset. This
approach however requires one to have a sufficiently large
set of markers before the quality of a set can be determined,
as obviously will not be the case in most situations.
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In conclusion, the DR is an additional tool in gaining
insight in the consistency of the dataset, and its ability to
describe the structure of the objects under, and allows pre-
diction of the effect of adding additional markers. However,
as with any resampling method, the results are based on the
dataset itself and not on any additional information. Any
bias in the data will also be present in the subsamples, and
can thus influence the value of the DR. But given this
restriction, it provides a new method to quantify an impor-
tant aspect of quality of the data before analysis by calculat-
ing an intra-class correlation using a jackknife approach. It
is widely deployable and relative intuitive.
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